
Issues and Techniques for
Anonymizing Network Traces

Vern Paxson      Ruoming Pang
ICSI/LBNL          Princeton University

vern@icir.org/rpang@cs.princeton.edu

September 27, 2005



Impact of Anonymization on
Research

• Major issue for soundly evaluating
defense mechanisms: what sort of
collateral damage do they incur?
⇒ Requires “realistic” background traffic

• In addition, the problem of “Crud”
– Real traffic is riddled with idiosyncratic/broken

activity
• Some of this still doable w/ anon. data

 Invaluable to have a ground truth oracle
 And/or: meta-data



Impact of Lack of Traffic Contents
on Research

• Much intrusion detection research requires
packet contents

• Major intrusion detection research pitfall:
failure to realistically assess false positives,
particularly in how they scale to large networks
– Especially for anomaly detection

• Lack of traffic contents increasingly worrisome
as semantic level of attacks rises

• How can we leverage the need to know
“what’s being said” but not “who is saying it”?



Fundamental Tension
• Research utility of traces diminishes as

information is removed
• Especially matters for traces used as

background traffic
• Question becomes: what are the

threats, the data contributor’s threat
model, and the technology available for
achieving the policy that incorporates
these



Sensitive Information to Protect

• What does the infrastructure look like?
• How much talking is going on?
• Who is talking to whom?
• What are they saying?

• (The medical information disclosure viewpoint):
– Identities
– Confidential attributes



What Does the Infrastructure
Look Like?

• Topology?  Capacities?  Hardware
specifics?  Future plans?

• Topology, capacities somewhat externally
measurable.  Others, only under NDA.

• Anonymize by constructing abstractions
that the provider signs off on.

• If these abstractions are “good”, that works



How Much Talking is Going On?

• E.g., # customers, volume of traffic,
how many web server hits

• Commercially sensitive
• Anonymized by expressing in purely

relative terms
– E.g., hourly fluctuation

• This is not broadly useful



Who is Talking to Whom?

• Usual approach: via 1-to-1 mapping of
actual IDs to synthetic IDs

• Can be fully opaque or can partially
preserve relationships, e.g.,
inside/outside, CIDR classes,  tcpdpriv
-A50 (et al)

• Very common technique

• ∃ inference attacks that leverage structure



What Are They Saying?

• Far and away most  common answer: You
Don’t Get To Know
– i.e., communication semantics completely

stripped
• Or, if not, syntactic garbling: e.g., s/PASS 

 .*/PASS XXX/
⇒ Can make inappropriate transformations
⇒ Unsound if done on a per-packet basis



Attacks on Anonymization

• Inference attacks:
– Fingerprinting via public/guessed info

• E.g., file size/date ⇒ identity of file
• E.g., software version, config ⇒ which

server
• E.g., HTTP item size ⇒ which item [*]



Attacks on Anonymization

• Dictionary attacks:
– If known hash/scrambling function, cram zillions

of candidates through it (or guess)
• Or: seed trace with known text

– Look for its mapping, search for collisions
• E.g., insert “RETR alice” to find

 “USER alice”
• Counter-tactic: separate namespaces

– E.g. Hash(file, server-ip, complete-path)



Attacks on Anonymization

• Structural attacks:
– Consider a site trace w/ complete (but 1-to-1)

rewriting of IP addresses
– If from a typical site, then riddled with sequential

scans
– E.g., for an arbitrary day at LBNL:

• Look for sequential scans of >= 10K addrs.
• Find them from 59 different remote hosts
⇒ Can completely undo any 1➞1 scrambling

− Combat via N ➞ 1 scrambling
– Or: identify scanners and remove them



Anonymization Tools

• Tcpdpriv, Tcpurify: strips transport
payloads, rewrites addresses/ports to
specified degree; noteworthy for “prefix-
preserving” address rewrite mode

• Ipsumdump: extracts given fields from
tcpdump trace, prints as ASCII

• Bro: trace transformation mode allows
semantic rewriting of payloads



tcpmkpub

• Programmable/customizable trace anonymization
• Forces header field-by-field examination, opt-in
• Supports complex address transformation, crud retention,
meta-data

• Template driven, e.g:
FIELD           (TCP_SRCPORT,   2,      KEEP)
FIELD           (TCP_DSTPORT,   2,      KEEP)
FIELD           (TCP_SEQ,       4,      KEEP)
FIELD           (TCP_ACK,       4,      KEEP)
FIELD           (TCP_OFF,       1,      KEEP)
FIELD           (TCP_FLAGS,     1,      KEEP)
FIELD           (TCP_WINDOW,    2,      KEEP)
PUTOFF_FIELD    (TCP_CHKSUM,    2,      ZERO)
FIELD           (TCP_URGPTR,    2,      KEEP)
FIELD           (TCP_OPTIONS,   VARLEN, anonymize_tcp_options)
PICKUP_FIELD    (TCP_CHKSUM,    0,      recompute_tcp_checksum)
FIELD           (TCP_DATA,      RESTLEN, SKIP)



The Verification Problem

• How do we know that an anonymized trace is
“safe”?

• Per [Pang/Paxson 2003]:
– Use filter-in rather than filter-out
– Anonymized trace only includes elements

explicitly allowed
– Fail-safe/conservative (white-lists, not black-lists)
– But: find that manual inspection needed in order

for trace to include “crud”
• Research on tools & principles needed



PREDICT-Specific Issues

• Researcher needs
– Retain as much trace richness as possible

• Legal issues
– Liability for what’s exposed in datasets

• Perception issues
– Danger for public misinterpretation of “DHS is

gathering personal information”
• Threat model

– PREDICT’s vetting of repository users should
help ease some data provider concerns


